Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MLÍCH, J. KOPLÍK, K. HRADIŠ, M. ZEMČÍK, P.
Originální název
Fire Segmentation in Still Images
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper, we propose a novel approach to fire localization in images based on a state of the art semantic segmentation method DeepLabV3. We compiled a data set of 1775 images containing fire from various sources for which we created polygon annotations. The data set is augmented with hard non-fire images from SUN397 data set. The segmentation method trained on our data set achieved results better than state of the art results on BowFire data set. We believe the created data set will facilitate further development of fire detection and segmentation methods, and that the methods should be based on general purpose segmentation networks.
Klíčová slova
Fire detection, Semantic segmentation, Deep learning, Neural Networks, Emergency situation analysis
Autoři
MLÍCH, J.; KOPLÍK, K.; HRADIŠ, M.; ZEMČÍK, P.
Vydáno
10. 2. 2020
Nakladatel
Springer International Publishing
Místo
Auckland
ISBN
978-3-030-40605-9
Kniha
Edice
Lecture Notes in Computer Science
Strany od
27
Strany do
37
Strany počet
11
URL
https://link.springer.com/chapter/10.1007%2F978-3-030-40605-9_3
BibTex
@inproceedings{BUT162094, author="Jozef {Mlích} and Karel {Koplík} and Michal {Hradiš} and Pavel {Zemčík}", title="Fire Segmentation in Still Images", booktitle="Springer International Publishing", year="2020", series="Lecture Notes in Computer Science", pages="27--37", publisher="Springer International Publishing", address="Auckland", doi="10.1007/978-3-030-40605-9\{_}3", isbn="978-3-030-40605-9", url="https://link.springer.com/chapter/10.1007%2F978-3-030-40605-9_3" }