Detail publikace

Fire Segmentation in Still Images

MLÍCH, J. KOPLÍK, K. HRADIŠ, M. ZEMČÍK, P.

Originální název

Fire Segmentation in Still Images

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

In this paper, we propose a novel approach to fire localization in images based on a state of the art semantic segmentation method DeepLabV3. We compiled a data set of 1775 images containing fire from various sources for which we created polygon annotations. The data set is augmented with hard non-fire images from SUN397 data set. The segmentation method trained on our data set achieved results better than state of the art results on BowFire data set. We believe the created data set will facilitate further development of fire detection and segmentation methods, and that the methods should be based on general purpose segmentation networks.

Klíčová slova

Fire detection, Semantic segmentation, Deep learning, Neural Networks, Emergency situation analysis

Autoři

MLÍCH, J.; KOPLÍK, K.; HRADIŠ, M.; ZEMČÍK, P.

Vydáno

10. 2. 2020

Nakladatel

Springer International Publishing

Místo

Auckland

ISBN

978-3-030-40605-9

Kniha

Springer International Publishing

Edice

Lecture Notes in Computer Science

Strany od

27

Strany do

37

Strany počet

11

URL

BibTex

@inproceedings{BUT162094,
  author="Jozef {Mlích} and Karel {Koplík} and Michal {Hradiš} and Pavel {Zemčík}",
  title="Fire Segmentation in Still Images",
  booktitle="Springer International Publishing",
  year="2020",
  series="Lecture Notes in Computer Science",
  pages="27--37",
  publisher="Springer International Publishing",
  address="Auckland",
  doi="10.1007/978-3-030-40605-9\{_}3",
  isbn="978-3-030-40605-9",
  url="https://link.springer.com/chapter/10.1007%2F978-3-030-40605-9_3"
}