Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVÁK, L. NOVÁK, D.
Originální název
Stochastic Spectral Methods in Uncertainty Quantification
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
Uncertainty quantification is an important part of a probabilistic design of structures. Nonetheless, common Monte Carlo methods are highly computationally demanding or even not feasible for this task, especially in case of mathematical models of physical problems solved by finite element method. Therefore, the paper is focused on the efficient alternative approach for uncertainty quantification-stochastic spectral expansion, represented herein by Polynomial Chaos Expansion. In recent years, an application of stochastic spectral methods in uncertainty quantification is the topic of research for many scientists in various fields of science and its efficiency was shown by various studies. The paper presents basic theoretical background of polynomial chaos expansion and its connection to uncertainty quantification. The possibility of efficient statistical and sensitivity analysis is investigated and an application in analytical examples with known reference solution is presented herein. Moreover, practical implementation of methodology is discussed and developed SW tool is presented herein.
Klíčová slova
Polynomial chaos expansion, Sensitivity analysis, Statistical analysis, Uncertainty quantification.
Autoři
NOVÁK, L.; NOVÁK, D.
Vydáno
31. 12. 2019
Nakladatel
VSB - Technical University of Ostrava
Místo
Ostrava, Czec Republic
ISSN
1804-4824
Periodikum
Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series
Ročník
19
Číslo
2
Stát
Česká republika
Strany od
48
Strany do
53
Strany počet
6
URL
http://tces.vsb.cz/Home/ArticleDetail/486
BibTex
@article{BUT162604, author="Lukáš {Novák} and Drahomír {Novák}", title="Stochastic Spectral Methods in Uncertainty Quantification", journal="Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series", year="2019", volume="19", number="2", pages="48--53", doi="10.35181/tces-2019-0019", issn="1804-4824", url="http://tces.vsb.cz/Home/ArticleDetail/486" }