Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PETRŽELA, J.
Originální název
Binary memory with orthogonal eigenspaces: from stable states to chaotic oscillations
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
This short paper demonstrates numerically and experimentally observed transitions between the stable states, regular and chaotic oscillations in the case of state representations of binary memory transformed into the Jordan form. Math model of original memory describes simple anti-series connection of two resonant tunneling diodes (RTDs). Derived third-order dynamical system is analyzed with respect to global behavior and, consequently, implemented as lumped analog circuit with piecewise linear (PWL) vector field. Oscilloscope screenshots prove that chaotic motion of binary memory is robust.
Klíčová slova
binary memory; chaos; piecewise linear; stable states; strange attractors
Autoři
Vydáno
26. 3. 2020
Nakladatel
Springer
Místo
Francie
ISSN
1951-6355
Periodikum
European Physical Journal-Special Topics
Ročník
229
Číslo
1
Stát
Francouzská republika
Strany od
1021
Strany do
1032
Strany počet
12
URL
https://link.springer.com/article/10.1140/epjst/e2020-900242-1
BibTex
@article{BUT163198, author="Jiří {Petržela}", title="Binary memory with orthogonal eigenspaces: from stable states to chaotic oscillations", journal="European Physical Journal-Special Topics", year="2020", volume="229", number="1", pages="1021--1032", doi="10.1140/epjst/e2020-900242-1", issn="1951-6355", url="https://link.springer.com/article/10.1140/epjst/e2020-900242-1" }