Detail publikace

Binary memory with orthogonal eigenspaces: from stable states to chaotic oscillations

PETRŽELA, J.

Originální název

Binary memory with orthogonal eigenspaces: from stable states to chaotic oscillations

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

This short paper demonstrates numerically and experimentally observed transitions between the stable states, regular and chaotic oscillations in the case of state representations of binary memory transformed into the Jordan form. Math model of original memory describes simple anti-series connection of two resonant tunneling diodes (RTDs). Derived third-order dynamical system is analyzed with respect to global behavior and, consequently, implemented as lumped analog circuit with piecewise linear (PWL) vector field. Oscilloscope screenshots prove that chaotic motion of binary memory is robust.

Klíčová slova

binary memory; chaos; piecewise linear; stable states; strange attractors

Autoři

PETRŽELA, J.

Vydáno

26. 3. 2020

Nakladatel

Springer

Místo

Francie

ISSN

1951-6355

Periodikum

European Physical Journal-Special Topics

Ročník

229

Číslo

1

Stát

Francouzská republika

Strany od

1021

Strany do

1032

Strany počet

12

URL

BibTex

@article{BUT163198,
  author="Jiří {Petržela}",
  title="Binary memory with orthogonal eigenspaces: from stable states to chaotic oscillations",
  journal="European Physical Journal-Special Topics",
  year="2020",
  volume="229",
  number="1",
  pages="1021--1032",
  doi="10.1140/epjst/e2020-900242-1",
  issn="1951-6355",
  url="https://link.springer.com/article/10.1140/epjst/e2020-900242-1"
}