Detail publikace

Comparison of bubble detectors and size distribution estimators

KÄLVIÄINEN, H. EEROLA, T. LENSU, L. ILONEN, J. ZEMČÍK, P. JURÁNKOVÁ, M. JURÁNEK, R.

Originální název

Comparison of bubble detectors and size distribution estimators

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

Detection, counting and characterization of bubbles, that is, transparent objects in a liquid, is important in many industrial applications. These applications include monitoring of pulp delignification and multiphase dispersion processes common in the chemical, pharmaceutical, and food industries. Typically the aim is to measure the bubble size distribution. In this paper, we present a comprehensive comparison of bubble detection methods for challenging industrial image data. Moreover, we compare the detection-based methods to a direct bubble size distribution estimation method that does not require the detection of individual bubbles. The experiments showed that the approach based on a convolutional neural network (CNN) outperforms the other methods in detection accuracy. However, the boosting-based approaches were remarkably faster to compute. The power spectrum approach for direct bubble size distribution estimation produced accurate distributions and it is fast to compute, but it does not provide the spatial locations of the bubbles. Selecting the most suitable method depends on the specific application.

Klíčová slova

Bubble detection Size distribution estimation Boosting-based detection Convolutional neural networks (CNN) Pulping

Autoři

KÄLVIÄINEN, H.; EEROLA, T.; LENSU, L.; ILONEN, J.; ZEMČÍK, P.; JURÁNKOVÁ, M.; JURÁNEK, R.

Vydáno

1. 1. 2018

ISSN

0167-8655

Periodikum

PATTERN RECOGNITION LETTERS

Ročník

101

Číslo

1

Stát

Nizozemsko

Strany od

60

Strany do

66

Strany počet

7

URL

BibTex

@article{BUT163408,
  author="KÄLVIÄINEN, H. and EEROLA, T. and LENSU, L. and ILONEN, J. and ZEMČÍK, P. and JURÁNKOVÁ, M. and JURÁNEK, R.",
  title="Comparison of bubble detectors and size distribution estimators",
  journal="PATTERN RECOGNITION LETTERS",
  year="2018",
  volume="101",
  number="1",
  pages="60--66",
  doi="10.1016/j.patrec.2017.11.014",
  issn="0167-8655",
  url="https://www.sciencedirect.com/science/article/pii/S0167865517304282"
}