Detail publikace

Minimum-Volume Covering Ellipsoids: Improving the Efficiency of the Wolfe-Atwood Algorithm for Large-Scale Instances by Pooling and Batching

KŮDELA, J.

Originální název

Minimum-Volume Covering Ellipsoids: Improving the Efficiency of the Wolfe-Atwood Algorithm for Large-Scale Instances by Pooling and Batching

Typ

článek v časopise ve Scopus, Jsc

Jazyk

angličtina

Originální abstrakt

The Minimum-Volume Covering Ellipsoid (MVCE) problem is an important opti-mization problem that comes up in various areas of engineering and statistics. Inthis paper, we improve the state-of-the-art Wolfe-Atwood algorithm for solving theMVCE problem with pooling and batching procedures. This implementation yieldssignificant improvements on the runtime of the algorithm for large-scale instancesof the MVCE problem, which is demonstrated on quite extensive computationalexperiments.

Klíčová slova

minimum-volume covering ellipsoid; Lowner-John ellipsoid; large-scale optimization; Wolfe-Atwood algorithm; pooling; batching

Autoři

KŮDELA, J.

Vydáno

21. 12. 2019

Nakladatel

Brno University of Technology

Místo

Brno, Czech Republic

ISSN

1803-3814

Periodikum

Mendel Journal series

Ročník

25

Číslo

2

Stát

Česká republika

Strany od

19

Strany do

26

Strany počet

8

URL

BibTex

@article{BUT163938,
  author="Jakub {Kůdela}",
  title="Minimum-Volume Covering Ellipsoids: Improving the Efficiency of the Wolfe-Atwood Algorithm for Large-Scale Instances by Pooling and Batching",
  journal="Mendel Journal series",
  year="2019",
  volume="25",
  number="2",
  pages="19--26",
  doi="10.13164/mendel.2019.2.019",
  issn="1803-3814",
  url="https://mendel-journal.org/index.php/mendel/article/view/104"
}