Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BOŠTÍK, O.
Originální název
SEMI-SUPERVISED DEEP LEARNING APPROACH FOR BREAKING GEOCACHING CAPTCHAS
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
For nearly two decades, a substantial part of developed anti-abuse and anti-spam systems for web applications called CAPTCHA is based on imperfections in OCR (Optical Character Recognition) algorithms. But with improvements in Deep Learning in OCR, these systems are now obsolete. More and more systems can now break various text Captchas with great accuracy. Now with sufficient training dataset, almost every text-based Captcha scheme can be broken. The focus of this work is to present an idea of a semi-supervised method for reading text-based Captcha which needs only a small initial dataset. The main part of this article is dealing with the problem of training a deep learning system with only a small sample of target Captcha scheme via transfer learning.
Klíčová slova
OCR, CAPTCHA, Deep learning, semi-supervised learning, MATLAB
Autoři
Vydáno
23. 4. 2020
Nakladatel
Vysoké učené Technické, Fakulta elektrotechniky a komunikačních technologií
Místo
Brno
ISBN
978-80-214-5868-0
Kniha
Proceedings II of the 26th Conference STUDENT EEICT 2020 - Selected papers
Edice
1
Číslo edice
Strany od
166
Strany do
170
Strany počet
5
BibTex
@inproceedings{BUT164004, author="Ondřej {Boštík}", title="SEMI-SUPERVISED DEEP LEARNING APPROACH FOR BREAKING GEOCACHING CAPTCHAS", booktitle="Proceedings II of the 26th Conference STUDENT EEICT 2020 - Selected papers", year="2020", series="1", number="1", pages="166--170", publisher="Vysoké učené Technické, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5868-0" }