Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SHAMAEI, A.
Originální název
DEEP LEARNING FOR MAGNETIC RESONANCE SPECTROSCOPY QUANTIFICATION: A TIME-FREQUENCY ANALYSIS APPROACH
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this study, we verify the hypothesis that deep learning in combination with time-frequency analsis can be used for metabolite quantification and yeilds results more robust than deep learning trained with magnetic resonance signals in the frequency domain.
Klíčová slova
magnetic resonance spectroscopy ,quantification, deep learning, machine learning
Autoři
Vydáno
23. 4. 2020
Nakladatel
Brno university of technology
Místo
Brno
ISBN
978-80-214-5868-0
Kniha
Proceeding 2 of 26th Conference student EEICT 2020
Edice
1
Číslo edice
2
Strany od
131
Strany do
135
Strany počet
5
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2020_sbornik_2.pdf
BibTex
@inproceedings{BUT164779, author="Amirmohammad {Shamaei}", title="DEEP LEARNING FOR MAGNETIC RESONANCE SPECTROSCOPY QUANTIFICATION: A TIME-FREQUENCY ANALYSIS APPROACH", booktitle="Proceeding 2 of 26th Conference student EEICT 2020", year="2020", series="1", number="2", pages="131--135", publisher="Brno university of technology", address="Brno", isbn="978-80-214-5868-0", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2020_sbornik_2.pdf" }