Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NEMČEK, J.
Originální název
Detection of intracranial haemorrhages in head CT data based on deep learning
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper, we present a method for detection of intracranial haemorrhages in the head CT data using convolutional neural networks. We introduce three 2D image classifiers that perform in three perpendicular anatomical planes and classify the CT slices into healthy or pathological, whereby they provide the information about the position of the haemorrhage in the 3D CT im-age. The accuracies of the three models are 90.19%, 88.15%, and 80.90% for the axial, sagital and coronal plane.
Klíčová slova
Intracranial haemorrhage, CT, classification, detection, convolutional neural network
Autoři
Vydáno
23. 4. 2020
Nakladatel
Brno University of Technolog, Faculty of Electrical Engineering anf Communication
Místo
Brno
ISBN
978-80-214-5868-0
Kniha
Proceedings II of the 26th Conference STUDENT EEICT 2020
Strany od
72
Strany do
75
Strany počet
4
URL
https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2020_sbornik_2.pdf
BibTex
@inproceedings{BUT164865, author="Jakub {Nemček}", title="Detection of intracranial haemorrhages in head CT data based on deep learning", booktitle="Proceedings II of the 26th Conference STUDENT EEICT 2020", year="2020", pages="72--75", publisher="Brno University of Technolog, Faculty of Electrical Engineering anf Communication", address="Brno", isbn="978-80-214-5868-0", url="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2020_sbornik_2.pdf" }