Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
STEVIČ, S. IRIČANIN, B. KOSMALA, W. ŠMARDA, Z.
Originální název
Note on some representations of general solutions to homogeneous linear difference equations
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
It is known that every solution to the second-order difference equation x(n) = x(n-1) + x(n-2) = 0, n >= 2, can be written in the following form x(n) = x(0)f(n-1) + x(1)f(n), where fn is the Fibonacci sequence. Here we find all the homogeneous linear difference equations with constant coefficients of any order whose general solution have a representation of a related form. We also present an interesting elementary procedure for finding a representation of general solution to any homogeneous linear difference equation with constant coefficients in terms of the coefficients of the equation, initial values, and an extension of the Fibonacci sequence. This is done for the case when all the roots of the characteristic polynomial associated with the equation are mutually different, and then it is shown that such obtained representation also holds in other cases. It is also shown that during application of the procedure the extension of the Fibonacci sequence appears naturally.
Klíčová slova
Homogeneous linear difference equation with constant coefficients; General solution; Representation of solutions; Fibonacci sequence
Autoři
STEVIČ, S.; IRIČANIN, B.; KOSMALA, W.; ŠMARDA, Z.
Vydáno
10. 9. 2020
Nakladatel
Springer Nature
ISSN
1687-1847
Periodikum
Advances in Difference Equations
Ročník
2020
Číslo
1
Stát
Spojené státy americké
Strany od
Strany do
13
Strany počet
URL
https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02944-y
Plný text v Digitální knihovně
http://hdl.handle.net/11012/196552
BibTex
@article{BUT165050, author="Stevo {Stevič} and Bratislav {Iričanin} and Witold {Kosmala} and Zdeněk {Šmarda}", title="Note on some representations of general solutions to homogeneous linear difference equations", journal="Advances in Difference Equations", year="2020", volume="2020", number="1", pages="1--13", doi="10.1186/s13662-020-02944-y", issn="1687-1847", url="https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02944-y" }