Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SCHWARZEROVÁ, J.
Originální název
Reproducible analytical pipeline for using raw RNA-Seq data from non-model organisms
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
Current biotechnological research of bacterial or archaeal genomes has huge potential due to the use of the next generation sequencing (NGS) platforms. NGS era unravelled huge analysis data for sufficiency description microorganisms with ecology potential in future. Nowadays, efforts lie in creating comprehensive pipelines that can be used for pre-processing analysis to enable effective following steps of high throughput data processing. This paper deals with design of data analysis pipeline for using raw RNA-Seq data that was applied to the Clostridium beijerinckii NRRL B-598. The bacterium is typical performer in the field of biofuels production thanks to its ability to produce butanol. Unfortunately, it is non-model organism as many other microorganisms which can be of great potential from ecological point of view. The proposed pipeline offers to take necessary steps in initial data processing that produces data of comparable quality to widely studied model organisms. Therefore, it can be combined with following pipelines for gene regulatory network inference, which was up to date matter of non-model organisms.
Klíčová slova
RNA-Seq; Next generation sequencing; Clostridium beijerinckii NRRL B-598; Transcriptome
Autoři
Vydáno
23. 4. 2020
Nakladatel
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Místo
Brno
ISBN
978-80-214-5867-3
Kniha
Proceedings of the 26th Conference STUDENT EEICT 2020
Číslo edice
1
Strany od
225
Strany do
228
Strany počet
4
URL
https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2020_sbornik_1.pdf
BibTex
@inproceedings{BUT165307, author="Jana {Schwarzerová}", title="Reproducible analytical pipeline for using raw RNA-Seq data from non-model organisms", booktitle="Proceedings of the 26th Conference STUDENT EEICT 2020", year="2020", number="1", pages="225--228", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5867-3", url="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2020_sbornik_1.pdf" }