Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MÍVALT, F.
Originální název
Augmentation Technique for Artificial Phase-Contrast Microscopy Image Synthesis for the Training of Deep Learning Algorithms
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
Phase contrast image segmentation is crucial for various biological tasks such as quantitative or comparative analysis at single cell level. Deep learning-based image segmentation has been transferred into the field of microscopy imaging. A large amount of precisely annotated cells is required. Thus, the annotation process is for the experts lengthy and time-consuming. This paper introduces a strategy and augmentation technique for artificial phase-contrast images synthesis aiming to train and support the generalisation ability of deep learning algorithms.
Klíčová slova
deep learning, phase-contrast, cell segmentation, data augmentation, artificial data gen- eration
Autoři
Vydáno
25. 4. 2019
Místo
Brno
ISBN
978-80-214-5735
Kniha
Proceedings of the 25th Conference STUDENT EEICT 2019
Číslo edice
1
Strany od
199
Strany do
202
Strany počet
2
URL
https://www.researchgate.net/publication/335365184_Augmentation_Technique_for_Artificial_Phase-Contrast_Microscopy_Image_Synthesis_for_the_Training_of_Deep_Learning_Algorithms
BibTex
@inproceedings{BUT165371, author="Filip {Mívalt}", title="Augmentation Technique for Artificial Phase-Contrast Microscopy Image Synthesis for the Training of Deep Learning Algorithms", booktitle="Proceedings of the 25th Conference STUDENT EEICT 2019", year="2019", number="1", pages="199--202", address="Brno", doi="10.13140/RG.2.2.32827.16160", isbn="978-80-214-5735", url="https://www.researchgate.net/publication/335365184_Augmentation_Technique_for_Artificial_Phase-Contrast_Microscopy_Image_Synthesis_for_the_Training_of_Deep_Learning_Algorithms" }