Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KUDELA, L. CHÝLEK, R. POSPÍŠIL, J.
Originální název
Efficient Integration of Machine Learning into District Heating Predictive Models
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Modern control strategies for district-level heating and cooling supply systems pose a difficult challenge. In order to integrate a wide range of hot and cold sources, these new systems will rely heavily on accumulation and much lower operating temperatures. This means that predictive models advising the control strategy must take into account long-lasting thermal effects but must not be computationally too expensive, because the control would not be possible in practice. This paper presents a simple but powerful systematic approach to reducing the complexity of individual components of such models. It makes it possible to combine human engineering intuition with machine learning and arrive at comprehensive and accurate models. As an example, a simple steady-state heat loss of buried pipes is extended with dynamics observed in a much more complex model. The results show that the process converges quickly toward reasonable solutions. The new auto-generated model performs 5 x 10(4) times faster than its complex equivalent while preserving essentially the same accuracy. This approach has great potential to enhance the development of fast predictive models not just for district heating. Only open-source software was used, while OpenModelica, Python, and FEniCS were predominantly used.
Klíčová slova
district heating; machine learning; optimization; modelling; dynamics; pipes; smart systems
Autoři
KUDELA, L.; CHÝLEK, R.; POSPÍŠIL, J.
Vydáno
2. 12. 2020
Nakladatel
MDPI
Místo
BASEL
ISSN
1996-1073
Periodikum
ENERGIES
Ročník
13
Číslo
23
Stát
Švýcarská konfederace
Strany od
1
Strany do
12
Strany počet
URL
https://www.mdpi.com/1996-1073/13/23/6381
Plný text v Digitální knihovně
http://hdl.handle.net/11012/195829
BibTex
@article{BUT166351, author="Libor {Kudela} and Radomír {Chýlek} and Jiří {Pospíšil}", title="Efficient Integration of Machine Learning into District Heating Predictive Models", journal="ENERGIES", year="2020", volume="13", number="23", pages="1--12", doi="10.3390/en13236381", issn="1996-1073", url="https://www.mdpi.com/1996-1073/13/23/6381" }