Detail publikace
The Dirichlet Problem for the Fourth Order Nonlinear Ordinary Differential Equations at Resonance
MUKHIGULASHVILI, S. MANJIKASHVILI, M.
Originální název
The Dirichlet Problem for the Fourth Order Nonlinear Ordinary Differential Equations at Resonance
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Landesman-Lazer's type efficient sufficient conditions are established for the solvability of the two-point boundary value problem. The results obtained in the paper are optimal in the sense that if f = 0, i.e. when nonlinear equation turns to the linear equation, from our results follows the first part of Fredholm's theorem.
Klíčová slova
fourth order nonlinear ordinary differential equation; resonance
Autoři
MUKHIGULASHVILI, S.; MANJIKASHVILI, M.
Vydáno
30. 9. 2020
ISSN
1068-3623
Periodikum
J CONTEMP MATH ANAL+
Ročník
55
Číslo
5
Stát
Arménská republika
Strany od
291
Strany do
302
Strany počet
12
URL
BibTex
@article{BUT167264,
author="Sulkhan {Mukhigulashvili} and Mariam {Manjikashvili}",
title="The Dirichlet Problem for the Fourth Order Nonlinear Ordinary Differential Equations at Resonance",
journal="J CONTEMP MATH ANAL+",
year="2020",
volume="55",
number="5",
pages="291--302",
doi="10.3103/S1068362320050039",
issn="1068-3623",
url="https://link.springer.com/article/10.3103/S1068362320050039"
}