Detail publikace

The Dirichlet Problem for the Fourth Order Nonlinear Ordinary Differential Equations at Resonance

MUKHIGULASHVILI, S. MANJIKASHVILI, M.

Originální název

The Dirichlet Problem for the Fourth Order Nonlinear Ordinary Differential Equations at Resonance

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

Landesman-Lazer's type efficient sufficient conditions are established for the solvability of the two-point boundary value problem. The results obtained in the paper are optimal in the sense that if f = 0, i.e. when nonlinear equation turns to the linear equation, from our results follows the first part of Fredholm's theorem.

Klíčová slova

fourth order nonlinear ordinary differential equation; resonance

Autoři

MUKHIGULASHVILI, S.; MANJIKASHVILI, M.

Vydáno

30. 9. 2020

ISSN

1068-3623

Periodikum

J CONTEMP MATH ANAL+

Ročník

55

Číslo

5

Stát

Arménská republika

Strany od

291

Strany do

302

Strany počet

12

URL

BibTex

@article{BUT167264,
  author="Sulkhan {Mukhigulashvili} and Mariam {Manjikashvili}",
  title="The Dirichlet Problem for the Fourth Order Nonlinear Ordinary Differential Equations at Resonance",
  journal="J CONTEMP MATH ANAL+",
  year="2020",
  volume="55",
  number="5",
  pages="291--302",
  doi="10.3103/S1068362320050039",
  issn="1068-3623",
  url="https://link.springer.com/article/10.3103/S1068362320050039"
}