Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
CHRASTINOVÁ, V.; TRYHUK, V.
Originální název
The Poincaré-Cartan forms of one-dimensional variational integrals
Anglický název
Druh
Článek WoS
Originální abstrakt
Fundamental concepts for variational integrals evaluated on the solutions of a system of ordinary differential equations are revised. The variations, stationarity, extremals and especially the Poincare-Cartan differential forms are relieved of all additional structures and subject to the equivalences and symmetries in the widest possible sense. Theory of the classical Lagrange variational problem eventually appears in full generality. It is presented from the differential forms point of view and does not require any intricate geometry. (C) 2020 Mathematical Institute Slovak Academy of Sciences
Anglický abstrakt
Klíčová slova
Diffiety; variational integral; extremal; Lagrange variational problem; Poincaré-Cartan form; Euler-Lagrange system; integral invariant; Hamilton-Jacobi equation; exact inverse problem
Klíčová slova v angličtině
Autoři
Rok RIV
2021
Vydáno
10.12.2020
Nakladatel
Walter de Gruyter GmBH
Místo
Berlin
ISSN
0139-9918
Periodikum
Mathematica Slovaca
Svazek
70
Číslo
6
Stát
Slovenská republika
Strany od
1381
Strany do
1412
Strany počet
32
URL
https://www.x-mol.com/paper/1339684794756751360
BibTex
@article{BUT167533, author="Veronika {Chrastinová} and Václav {Tryhuk}", title="The Poincaré-Cartan forms of one-dimensional variational integrals", journal="Mathematica Slovaca", year="2020", volume="70", number="6", pages="1381--1412", doi="10.1515/ms-2017-0439", issn="0139-9918", url="https://www.x-mol.com/paper/1339684794756751360" }