Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŘEHÁK, P.
Originální název
Asymptotics of perturbed discrete Euler equations in the critical case
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We consider the difference equation Delta(2)y(k) + p(k)y(k + 1) = 0 under the condition lim(k ->infinity) k(2)p(k) = 1/4; such a setting can cover various perturbations of the critical (double root) case in Euler type difference equations. We establish precise asymptotic formulae for all nonoscillatory solutions. An important role is played by the concept of the refined discrete regular variation, transformations of dependent and independent variable, and asymptotic theory of dynamic equations on time scales. (C) 2020 Elsevier Inc. All rights reserved.
Klíčová slova
Euler difference equation; Asymptotic behavior; Regular variation
Autoři
Vydáno
15. 4. 2021
Nakladatel
ACADEMIC PRESS INC ELSEVIER SCIENCE
Místo
SAN DIEGO
ISSN
0022-247X
Periodikum
Journal of Mathematical Analysis and Application
Ročník
496
Číslo
2
Stát
Spojené státy americké
Strany od
1
Strany do
9
Strany počet
URL
https://doi.org/10.1016/j.jmaa.2020.124825
BibTex
@article{BUT167822, author="Pavel {Řehák}", title="Asymptotics of perturbed discrete Euler equations in the critical case", journal="Journal of Mathematical Analysis and Application", year="2021", volume="496", number="2", pages="1--9", doi="10.1016/j.jmaa.2020.124825", issn="0022-247X", url="https://doi.org/10.1016/j.jmaa.2020.124825" }