Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŘEHÁK, P. MATUCCI, S. DOŠLÁ, Z.
Originální název
Decaying positive global solutions of second order difference equations with mean curvature operator
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
A boundary value problem on an unbounded domain, associated to difference equations with the Euclidean mean curvature operator is considered. The existence of solutions which are positive on the whole domain and decaying at infinity is examined by proving new Sturm comparison theorems for linear difference equations and using a fixed point approach based on a linearization device. The process of discretization of the boundary value problem on the unbounded domain is examined, and some discrepancies between the discrete and the continuous cases are pointed out, too.
Klíčová slova
second order nonlinear difference equations; Euclidean mean curvature operator; boundary value problems; decaying solutions; recessive solutions; comparison theorems
Autoři
ŘEHÁK, P.; MATUCCI, S.; DOŠLÁ, Z.
Vydáno
21. 12. 2020
Nakladatel
University of Szeged
Místo
SZEGED
ISSN
1417-3875
Periodikum
Electronic Journal of Qualitative Theory of Differential Equations
Ročník
2020
Číslo
72
Stát
Maďarsko
Strany od
1
Strany do
16
Strany počet
URL
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8939
Plný text v Digitální knihovně
http://hdl.handle.net/11012/196453
BibTex
@article{BUT167823, author="Zuzana {Došlá} and Serena {Matucci} and Pavel {Řehák}", title="Decaying positive global solutions of second order difference equations with mean curvature operator", journal="Electronic Journal of Qualitative Theory of Differential Equations", year="2020", volume="2020", number="72", pages="1--16", doi="10.14232/ejqtde.2020.1.72", issn="1417-3875", url="http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8939" }