Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠAFAŘÍK, J.
Originální název
Weakly Delayed Systems of Linear Discrete Equations in $\mathbb{R}^3$
Typ
dizertace
Jazyk
angličtina
Originální abstrakt
The present thesis deals with the construction of a general solution of weakly delayed systems of linear discrete equations in ${\mathbb R}^3$ of the form \begin{equation*} x(k+1)=Ax(k)+Bx(k-m) \end{equation*} where $m>0$ is a positive integer, $x\colon \bZ_{-m}^{\infty}\to\bR^3$, $\bZ_{-m}^{\infty} := \{-m, -m+1, \dots, \infty\}$, $k\in\bZ_0^{\infty}$, $A=(a_{ij})$ and $B=(b_{ij})$ are constant $3\times 3$ matrices. The characteristic equations of weakly delayed systems are identical with those of the same systems but without delayed terms. The criteria ensuring that a system is weakly delayed are developed and then specified for every possible case of the Jordan form of matrix $A$. The system is solved by transforming it into a higher-dimensional system but without delays \begin{equation*} y(k+1)=\mathcal{A}y(k), \end{equation*} where ${\mathrm{dim}}\ y = 3(m+1)$. Using methods of linear algebra, it is possible to find the Jordan forms of $\mathcal{A}$ depending on the eigenvalues of matrices $A$ and $B$. Therefore, general the solution of the new system can be found and, consequently, the general solution of the initial system deduced.
Klíčová slova
discrete equation, linear systems of difference equations, weakly delayed system, Cayley-Hamilton theorem, Laplace theorem, Jordan form
Autoři
Vydáno
1. 6. 2018
Nakladatel
VUT
Místo
Brno
Strany počet
104
URL
https://www.vutbr.cz/studenti/zav-prace?zp_id=112186
BibTex
@phdthesis{BUT168033, author="Jan {Šafařík}", title="Weakly Delayed Systems of Linear Discrete Equations in $\mathbb{R}^3$", publisher="VUT", address="Brno", pages="104", year="2018", url="https://www.vutbr.cz/studenti/zav-prace?zp_id=112186" }