Detail publikace

Digital Jordan Curves and Surfaces with Respect to a Closure Operator

ŠLAPAL, J.

Originální název

Digital Jordan Curves and Surfaces with Respect to a Closure Operator

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this paper, we propose new definitions of digital Jordan curves and digital Jordan surfaces. We start with introducing and studying closure operators on a given set that are associated with n-ary relations (n > 1 an integer) on this set. Discussed are in particular the closure operators associated with certain n-ary relations on the digital line Z. Of these relations, we focus on a ternary one equipping the digital plane Z(2) and the digital space Z(3) with the closure operator associated with the direct product of two and three, respectively, copies of this ternary relation. The connectedness provided by the closure operator is shown to be suitable for defining digital curves satisfying a digital Jordan curve theorem and digital surfaces satisfying a digital Jordan surface theorem.

Klíčová slova

Digital space; n-ary relation; closure operator; connectedness; digital Jordan curve; digital Jordan surface

Autoři

ŠLAPAL, J.

Vydáno

21. 3. 2021

Nakladatel

IOS PRESS

Místo

AMSTERDAM

ISSN

0169-2968

Periodikum

Fundamenta Informaticae

Ročník

179

Číslo

1

Stát

Polská republika

Strany od

59

Strany do

74

Strany počet

16

URL

BibTex

@article{BUT168052,
  author="Josef {Šlapal}",
  title="Digital Jordan Curves and Surfaces with Respect to a Closure Operator",
  journal="Fundamenta Informaticae",
  year="2021",
  volume="179",
  number="1",
  pages="59--74",
  doi="10.3233/FI-2021-2013",
  issn="0169-2968",
  url="https://content.iospress.com/articles/fundamenta-informaticae/fi2013"
}