Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠLAPAL, J.
Originální název
Digital Jordan Curves and Surfaces with Respect to a Closure Operator
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper, we propose new definitions of digital Jordan curves and digital Jordan surfaces. We start with introducing and studying closure operators on a given set that are associated with n-ary relations (n > 1 an integer) on this set. Discussed are in particular the closure operators associated with certain n-ary relations on the digital line Z. Of these relations, we focus on a ternary one equipping the digital plane Z(2) and the digital space Z(3) with the closure operator associated with the direct product of two and three, respectively, copies of this ternary relation. The connectedness provided by the closure operator is shown to be suitable for defining digital curves satisfying a digital Jordan curve theorem and digital surfaces satisfying a digital Jordan surface theorem.
Klíčová slova
Digital space; n-ary relation; closure operator; connectedness; digital Jordan curve; digital Jordan surface
Autoři
Vydáno
21. 3. 2021
Nakladatel
IOS PRESS
Místo
AMSTERDAM
ISSN
0169-2968
Periodikum
Fundamenta Informaticae
Ročník
179
Číslo
1
Stát
Polská republika
Strany od
59
Strany do
74
Strany počet
16
URL
https://content.iospress.com/articles/fundamenta-informaticae/fi2013
BibTex
@article{BUT168052, author="Josef {Šlapal}", title="Digital Jordan Curves and Surfaces with Respect to a Closure Operator", journal="Fundamenta Informaticae", year="2021", volume="179", number="1", pages="59--74", doi="10.3233/FI-2021-2013", issn="0169-2968", url="https://content.iospress.com/articles/fundamenta-informaticae/fi2013" }