Detail publikace

BUT System Description to VoxCeleb Speaker Recognition Challenge 2019

ZEINALI, H. WANG, S. SILNOVA, A. MATĚJKA, P. PLCHOT, O.

Originální název

BUT System Description to VoxCeleb Speaker Recognition Challenge 2019

Typ

článek ve sborníku mimo WoS a Scopus

Jazyk

angličtina

Originální abstrakt

In this report, we describe the submission of Brno University of Technology (BUT) team to the VoxCeleb Speaker Recognition Challenge (VoxSRC) 2019. We also provide a brief analysis of different systems on VoxCeleb-1 test sets. Submitted systems for both Fixed and Open conditions are a fusion of 4 Convolutional Neural Network (CNN) topologies. The first and second networks have ResNet34 topology and use twodimensional CNNs. The last two networks are one-dimensional CNN and are based on the x-vector extraction topology. Some of the networks are fine-tuned using additive margin angular softmax. Kaldi FBanks and Kaldi PLPs were used as features. The difference between Fixed and Open systems lies in the used training data and fusion strategy. The best systems for Fixed and Open conditions achieved 1.42 % and 1.26 % ERR on the challenge evaluation set respectively.

Klíčová slova

VoxCeleb Speaker Recognition Challenge, Deep Neural Networks, ResNet, x-vector, PLDA, Cosine distance

Autoři

ZEINALI, H.; WANG, S.; SILNOVA, A.; MATĚJKA, P.; PLCHOT, O.

Vydáno

14. 9. 2019

Místo

Graz

Strany od

1

Strany do

4

Strany počet

4

URL

BibTex

@inproceedings{BUT168476,
  author="Hossein {Zeinali} and Shuai {Wang} and Anna {Silnova} and Pavel {Matějka} and Oldřich {Plchot}",
  title="BUT System Description to VoxCeleb Speaker Recognition Challenge 2019",
  booktitle="Proceedings of The VoxCeleb Challange Workshop 2019",
  year="2019",
  pages="1--4",
  address="Graz",
  url="https://arxiv.org/abs/1910.12592"
}