Detail publikačního výsledku

A convenient graph connectedness for digital imagery

ŠLAPAL, J.

Originální název

A convenient graph connectedness for digital imagery

Anglický název

A convenient graph connectedness for digital imagery

Druh

Stať ve sborníku v databázi WoS či Scopus

Originální abstrakt

In a simple undirected graph, we introduce a special connectedness induced by a set of paths of length 2. We focus on the 8-adjacency graph (with the vertex set Z^2) and study the connectedness induced by a certain set of paths of length 2 in the graph. For this connectedness, we prove a digital Jordan curve theorem by determining the Jordan curves, i.e., the circles in the graph that separate  Z^2 into exactly two connected components.

Anglický abstrakt

In a simple undirected graph, we introduce a special connectedness induced by a set of paths of length 2. We focus on the 8-adjacency graph (with the vertex set Z^2) and study the connectedness induced by a certain set of paths of length 2 in the graph. For this connectedness, we prove a digital Jordan curve theorem by determining the Jordan curves, i.e., the circles in the graph that separate  Z^2 into exactly two connected components.

Klíčová slova

Simple undirected graph, connectedness, digital plane, Khalimsky topology, Jordan curve theorem.

Klíčová slova v angličtině

Simple undirected graph, connectedness, digital plane, Khalimsky topology, Jordan curve theorem.

Autoři

ŠLAPAL, J.

Rok RIV

2021

Vydáno

01.01.2021

Nakladatel

Springer International Publishing

Místo

Cham

ISBN

978-3-030-67076-4

Kniha

High Performance Computing in Science and Engineering 2019

Edice

Lecture Notes in Computer Science

ISSN

0302-9743

Periodikum

Lecture Notes in Computer Science

Svazek

2021

Číslo

12456

Stát

Spolková republika Německo

Strany od

150

Strany do

162

Strany počet

13

URL

BibTex

@inproceedings{BUT168483,
  author="Josef {Šlapal}",
  title="A convenient graph connectedness for digital imagery",
  booktitle="High Performance Computing in Science and Engineering 2019",
  year="2021",
  series="Lecture Notes in Computer Science",
  journal="Lecture Notes in Computer Science",
  volume="2021",
  number="12456",
  pages="150--162",
  publisher="Springer International Publishing",
  address="Cham",
  doi="10.1007/978-3-030-67077-1\{_}9",
  isbn="978-3-030-67076-4",
  issn="0302-9743",
  url="https://www.springer.com/gp/book/9783030670764"
}

Dokumenty