Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠLAPAL, J.
Originální název
A convenient graph connectedness for digital imagery
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In a simple undirected graph, we introduce a special connectedness induced by a set of paths of length 2. We focus on the 8-adjacency graph (with the vertex set Z^2) and study the connectedness induced by a certain set of paths of length 2 in the graph. For this connectedness, we prove a digital Jordan curve theorem by determining the Jordan curves, i.e., the circles in the graph that separate Z^2 into exactly two connected components.
Klíčová slova
Simple undirected graph, connectedness, digital plane, Khalimsky topology, Jordan curve theorem.
Autoři
Vydáno
1. 1. 2021
Nakladatel
Springer International Publishing
Místo
Cham
ISBN
978-3-030-67076-4
Kniha
High Performance Computing in Science and Engineering 2019
Edice
Lecture Notes in Computer Science
ISSN
0302-9743
Periodikum
Ročník
2021
Číslo
12456
Stát
Spolková republika Německo
Strany od
150
Strany do
162
Strany počet
13
URL
https://www.springer.com/gp/book/9783030670764
BibTex
@inproceedings{BUT168483, author="Josef {Šlapal}", title="A convenient graph connectedness for digital imagery", booktitle="High Performance Computing in Science and Engineering 2019", year="2021", series="Lecture Notes in Computer Science", journal="Lecture Notes in Computer Science", volume="2021", number="12456", pages="150--162", publisher="Springer International Publishing", address="Cham", doi="10.1007/978-3-030-67077-1\{_}9", isbn="978-3-030-67076-4", issn="0302-9743", url="https://www.springer.com/gp/book/9783030670764" }