Detail publikace

A convenient graph connectedness for digital imagery

ŠLAPAL, J.

Originální název

A convenient graph connectedness for digital imagery

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

In a simple undirected graph, we introduce a special connectedness induced by a set of paths of length 2. We focus on the 8-adjacency graph (with the vertex set Z^2) and study the connectedness induced by a certain set of paths of length 2 in the graph. For this connectedness, we prove a digital Jordan curve theorem by determining the Jordan curves, i.e., the circles in the graph that separate  Z^2 into exactly two connected components.

Klíčová slova

Simple undirected graph, connectedness, digital plane, Khalimsky topology, Jordan curve theorem.

Autoři

ŠLAPAL, J.

Vydáno

1. 1. 2021

Nakladatel

Springer International Publishing

Místo

Cham

ISBN

978-3-030-67076-4

Kniha

High Performance Computing in Science and Engineering 2019

Edice

Lecture Notes in Computer Science

ISSN

0302-9743

Periodikum

Lecture Notes in Computer Science

Ročník

2021

Číslo

12456

Stát

Spolková republika Německo

Strany od

150

Strany do

162

Strany počet

13

URL

BibTex

@inproceedings{BUT168483,
  author="Josef {Šlapal}",
  title="A convenient graph connectedness for digital imagery",
  booktitle="High Performance Computing in Science and Engineering 2019",
  year="2021",
  series="Lecture Notes in Computer Science",
  journal="Lecture Notes in Computer Science",
  volume="2021",
  number="12456",
  pages="150--162",
  publisher="Springer International Publishing",
  address="Cham",
  doi="10.1007/978-3-030-67077-1\{_}9",
  isbn="978-3-030-67076-4",
  issn="0302-9743",
  url="https://www.springer.com/gp/book/9783030670764"
}