Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠLAPAL, J.
Originální název
A 3D digital Jordan-Brouwer separation theorem
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We introduce and discuss a concept of connectedness induced by an n-ary relation (n>1 an integer). In particular, for every integer n>1, we define an n-ary relation R on the digital line Z and equip the digital space with the n-ary relation S obtained as a special product of three copies of R. For n=2, the connectedness induced by S coincides with the connectedness given by the Khalimsky topology on the 3D digital space and we show that, for every integer n>2, it allows for a digital analog of the Jordan-Brouwer separation theorem for three-dimensional spaces. An advantage of the connectedness induced by S over that given by the Khalimsky topology is shown, too.
Klíčová slova
n-ary relation, connectedness, digital space, digital surface, Jordan-Brouwer separation theorem
Autoři
Vydáno
17. 7. 2020
ISSN
1807-0302
Periodikum
COMPUTATIONAL & APPLIED MATHEMATICS
Ročník
39
Číslo
11
Stát
Brazilská federativní republika
Strany od
1
Strany do
10
Strany počet
URL
https://link.springer.com/content/pdf/10.1007%2Fs40314-020-01249-w.pdf
BibTex
@article{BUT168535, author="Josef {Šlapal}", title="A 3D digital Jordan-Brouwer separation theorem", journal="COMPUTATIONAL & APPLIED MATHEMATICS", year="2020", volume="39", number="11", pages="1--10", doi="10.1007/s40314-020-01249-w", issn="1807-0302", url="https://link.springer.com/content/pdf/10.1007%2Fs40314-020-01249-w.pdf" }