Detail publikace

Dual strategies for solving the Stokes problem with stick-slip boundary conditions in 3D

HASLINGER, J. KUČERA, R. SASSI, T. ŠÁTEK, V.

Originální název

Dual strategies for solving the Stokes problem with stick-slip boundary conditions in 3D

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The paper deals with the numerical realization of the 3D Stokes flow subject to threshold slip boundary conditions. The weak velocity-pressure formulation leads to an inequality type problem that is approximated by a mixed finite element method. The resulting algebraic system is non-smooth. Besides the pressure, three additional Lagrange multipliers are introduced: the discrete normal stress releasing the impermeability condition and two discrete shear stresses regularizing the non-smooth slip term. Eliminating the discrete velocity component we obtain the minimization problem for the smooth functional, expressed in terms of the pressure, the normal, and the shear stresses. This problem is solved either by a path following variant of the interior point method or by the semi-smooth Newton method. Numerical scalability is illustrated by computational experiments.

Klíčová slova

Stokes problem, Stick-slip boundary conditions, Interior-point method, Semi-smooth Newton method

Autoři

HASLINGER, J.; KUČERA, R.; SASSI, T.; ŠÁTEK, V.

Vydáno

9. 11. 2021

ISSN

0378-4754

Periodikum

Mathematics and Computers in Simulation

Ročník

2021

Číslo

189

Stát

Nizozemsko

Strany od

191

Strany do

206

Strany počet

16

URL

BibTex

@article{BUT168554,
  author="Jaroslav {Haslinger} and Radek {Kučera} and Taoufik {Sassi} and Václav {Šátek}",
  title="Dual strategies for solving the Stokes problem with stick-slip boundary conditions in 3D",
  journal="Mathematics and Computers in Simulation",
  year="2021",
  volume="2021",
  number="189",
  pages="191--206",
  doi="10.1016/j.matcom.2020.12.015",
  issn="0378-4754",
  url="https://www.sciencedirect.com/science/article/pii/S0378475420304705"
}