Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVÁK, L.
Originální název
Taylor Series Expansion for Functions of Correlated Random Variables
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
Semi-probabilistic approach in combination with non-linear finite element method is employed more frequently nowadays for design and assessment of structures. In that case, it is crucial to estimate statistical moments of structural resistance assuming uncertain input variables. The task is the estimation of statistical moments of function of random variables solved by finite element method. One of the solutions is represented by Taylor series expansion, which can be further used for the derivation of specific differencing schemes. The paper is focused on derivation of accurate differencing schemes for functions of correlated random variables. It is numerically shown, that the proposed differencing schemes are more accurate in comparison to standard scheme in case of strong correlation.
Klíčová slova
Taylor series expansion; statistical correlation; estimation of statistical moments; semi-probabilistic approach
Autoři
Vydáno
28. 1. 2021
Nakladatel
Vysoké učení technické v Brně, Fakulta stavební
Místo
Brno, Česká republika
ISBN
978-80-86433-75-2
Kniha
Proceedings of Juniorstav 2021
Strany od
364
Strany do
368
Strany počet
5
BibTex
@inproceedings{BUT168853, author="Lukáš {Novák}", title="Taylor Series Expansion for Functions of Correlated Random Variables", booktitle="Proceedings of Juniorstav 2021", year="2021", pages="364--368", publisher="Vysoké učení technické v Brně, Fakulta stavební", address="Brno, Česká republika", isbn="978-80-86433-75-2" }