Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
Jérôme Hurst, Arnaud De Riz, Michal Staňo, Jean-Christophe Toussaint, Olivier Fruchart, Daria Gusakova
Originální název
Theoretical study of current-induced domain wall motion in magnetic nanotubes with azimuthal domains
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We report a theoretical overview of the magnetic domain wall behavior under an electric current in infinitely long nanotubes with azimuthal magnetization, combining the one-dimensional analytic model and micromagnetic simulations. We highlight effects that, besides spin-transfer torques already largely understood in flat strips, arise specifically in the tubular geometry: the Ersted field and curvature-induced magnetic anisotropy resulting both from the exchange interaction and material growth. Depending on both the geometry of the tube and the strength of the azimuthal anisotropy, Bloch or Ned walls arise at rest, resulting in two regimes of motion largely dominated by either spin-transfer torques or the Ersted field. We determine the Walker breakdown current in all cases, and highlight the most suitable parameters to achieve high domain wall speed.
Klíčová slova
magnetic nanotube; domain wall; dynamics; micromagnetic simulation; LLG; azimuthal domain; domain wall motion
Autoři
Vydáno
19. 1. 2021
Nakladatel
AMER PHYSICAL SOC
Místo
COLLEGE PK
ISSN
2469-9950
Periodikum
PHYSICAL REVIEW B
Ročník
103
Číslo
2
Stát
Spojené státy americké
Strany od
1
Strany do
13
Strany počet
URL
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.024434
BibTex
@article{BUT169358, author="Jérôme {Hurst} and Michal {Staňo} and Olivier {Fruchart}", title="Theoretical study of current-induced domain wall motion in magnetic nanotubes with azimuthal domains", journal="PHYSICAL REVIEW B", year="2021", volume="103", number="2", pages="1--13", doi="10.1103/PhysRevB.103.024434", issn="2469-9950", url="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.024434" }