Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KVĚTOŇ, J. ELIÁŠ, J.
Originální název
On solution of two dimensional Poisson’s problem using unstructured grid
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Steady state heat conduction, diffusion or electrostatic problems are described by Piosson’s equation along with appropriate boundary conditions. Several numerical methods have been developed to solve this boundary value problem on regular and irregular nodal arrangements. We compare performance of three of them, namely the finite volume method, the virtual element method and the finite element method, applied on specific spatial discretization provided by Voronoi tessellation on random set of nuclei. The finite volume method advantageously employ perpendicularity of the faces and connections between nuclei. The virtual element method provides correct integration scheme for polygonal finite elements because they otherwise suffer from imprecise integration of non-polynomial shape function. The last method under comparison is the finite element method based on polygonal elements created by static condensation of isoparametric triangles. The methods are compared on several patch tests and convergence studies are performed.
Klíčová slova
Poisson’s equation; unstructured grid; Voronoi tessellation; discrete particle model; steady state flow
Autoři
KVĚTOŇ, J.; ELIÁŠ, J.
Vydáno
30. 11. 2020
Nakladatel
AIP Publishing
Místo
Online
ISBN
978-0-7354-4045-6
Kniha
AIP Conference Proceedings
Edice
2309
ISSN
0094-243X
Periodikum
AIP conference proceedings
Ročník
Stát
Spojené státy americké
Strany od
020041-1
Strany do
020041-7
Strany počet
7
URL
https://aip.scitation.org/doi/abs/10.1063/5.0034504