Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
REPP, R. GIUSEPPE, P. MEYER, F. BRACA, P. HLAWATSCH, F.
Originální název
A Distributed Bernoulli Filter Based on Likelihood Consensus with Adaptive Pruning
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The Bernoulli filter (BF) is a Bayes-optimal method for target tracking when the target can be present or absent in unknown time intervals and the measurements are affected by clutter and missed detections. We propose a distributed particle-based multisensor BF algorithm that approximates the centralized multisensor BF for arbitrary nonlinear and non-Gaussian system models. Our distributed algorithm uses a new extension of the likelihood consensus (LC) scheme that accounts for both target presence and absence and includes an adaptive pruning of the LC expansion coefficients. Simulation results for a heterogeneous sensor network with significant noise and clutter show that the performance of our algorithm is close to that of the centralized multisensor BF.
Klíčová slova
Bernoulli filter; distributed target tracking; distributed particle filtering; likelihood consensus; random finite set; sensor network
Autoři
REPP, R.; GIUSEPPE, P.; MEYER, F.; BRACA, P.; HLAWATSCH, F.
Vydáno
6. 9. 2018
Nakladatel
IEEE
Místo
NEW YORK
ISBN
978-0-9964527-6-2
Kniha
2018 21st International Conference on Information Fusion (FUSION)
Strany od
2445
Strany do
2452
Strany počet
8
URL
https://ieeexplore.ieee.org/document/8455302
BibTex
@inproceedings{BUT170646, author="REPP, R. and GIUSEPPE, P. and MEYER, F. and BRACA, P. and HLAWATSCH, F.", title="A Distributed Bernoulli Filter Based on Likelihood Consensus with Adaptive Pruning", booktitle="2018 21st International Conference on Information Fusion (FUSION)", year="2018", pages="2445--2452", publisher="IEEE", address="NEW YORK", isbn="978-0-9964527-6-2", url="https://ieeexplore.ieee.org/document/8455302" }