Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVOTNÁ, P.
Originální název
Multiple Instance Learning Framework Used For ECG Premature Contraction Localization
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
We propose the model combining convolutional neural network with multiple instance learning in order to localize the premature atrial contraction and premature ventricular contraction. The model is based on ResNet architecture modified for 1D signal processing. Model was trained on China Physiological Signal Challenge 2018 database extended by manually labeled ground truth positions of premature complexes. The presented method did not reach satisfying results in PAC localization (with dice = 0.127 for avg-pooling implementation). On the other hand, results of localization of PVCs were comparable with other published studies (with dice = 0.952 for avg-pooling implementation).
Klíčová slova
EEICT, ECG, PAC, PVC, CNN, MIL, arrhytmia, localization
Autoři
Vydáno
23. 4. 2020
Nakladatel
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Místo
Brno
ISBN
978-80-214-5942-7
Kniha
Proceedings I of the 27th Conference STUDENT EEICT 2021
Edice
1
Číslo edice
Strany od
Strany do
5
Strany počet
BibTex
@inproceedings{BUT170971, author="Petra {Novotná}", title="Multiple Instance Learning Framework Used For ECG Premature Contraction Localization", booktitle="Proceedings I of the 27th Conference STUDENT EEICT 2021", year="2020", series="1", number="1", pages="1--5", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5942-7" }