Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BILÍK, Š.
Originální název
Feature space reduction as data preprocessing for the anomaly detection
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
In this paper, we present two pipelines in order to reduce the feature space for anomaly detection using the One Class SVM. As a first stage of both pipelines, we compare the performance of three convolutional autoencoders. We use the PCA method together with t-SNE as the first pipeline and the reconstruction errors based method as the second. Both methods have potential for the anomaly detection, but the reconstruction error metrics prove to be more robust for this task. We show that the convolutional autoencoder architecture doesn't have a significant effect for this task and we prove the potential of our approach on the real world dataset.
Klíčová slova
Anomaly detection;Convolutional autoencoder;PCA;t-SNE;CNN;OC-SVM
Autoři
Vydáno
30. 4. 2021
Nakladatel
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo
Brno
ISBN
978-80-214-5942-7
Kniha
Proceedings I of the 27th Conference STUDENT EEICT 2021
Strany od
415
Strany do
419
Strany počet
5
URL
https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf
BibTex
@inproceedings{BUT171163, author="Šimon {Bilík}", title="Feature space reduction as data preprocessing for the anomaly detection", booktitle="Proceedings I of the 27th Conference STUDENT EEICT 2021", year="2021", pages="415--419", publisher="Brno University of Technology, Faculty of Electrical Engineering and Communication", address="Brno", isbn="978-80-214-5942-7", url="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf" }