Detail publikace

Addressing the sparsity of laser-induced breakdown spectroscopy data with randomized sparse principal component analysis

KÉPEŠ, E. VRÁBEL, J. POŘÍZKA, P. KAISER, J.

Originální název

Addressing the sparsity of laser-induced breakdown spectroscopy data with randomized sparse principal component analysis

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

Emission spectra yielded by laser-induced breakdown spectroscopy (LIBS) exhibit high dimensionality, redundancy, and sparsity. The high dimensionality is often addressed by principal component analysis (PCA) which creates a low dimensional embedding of the spectra by projecting them into the score space. However, PCA does not effectively deal with the sparsity of the analysed data, including LIBS spectra. Consequently, sparse PCA (SPCA) was proposed for the analysis of high-dimensional sparse data. Nevertheless, SPCA remains underutilized for LIBS applications. Thus, in this work, we show that SPCA combined with genetic algorithms offers marginal improvements in clustering and quantification using multivariate calibration. More importantly, we show that SPCA significantly improves the interpretability of loading spectra. In addition, we show that the loading spectra yielded by SPCA differ from those yielded by sparse partial least squares regression. Finally, by using the randomized SPCA (RSPCA) algorithm for carrying out SPCA, we indirectly demonstrate that the analysis of LIBS data can greatly benefit from the tools developed by randomized linear algebra: RSPCA offers a 20-fold increase in computation speed compared to PCA based on singular value decomposition.

Klíčová slova

Laser-induced breakdown spectroscopy, randomized sparse principal component analysis, regularization, sparsity, spectroscopic data, ChemCam calibration dataset

Autoři

KÉPEŠ, E.; VRÁBEL, J.; POŘÍZKA, P.; KAISER, J.

Vydáno

22. 4. 2021

Nakladatel

ROYAL SOC CHEMISTRY

Místo

CAMBRIDGE

ISSN

1364-5544

Periodikum

Journal of Analytical Atomic Spectrometry

Ročník

36

Číslo

6

Stát

Spojené království Velké Británie a Severního Irska

Strany od

1410

Strany do

1421

Strany počet

12

URL

BibTex

@article{BUT171307,
  author="Erik {Képeš} and Jakub {Vrábel} and Pavel {Pořízka} and Jozef {Kaiser}",
  title="Addressing the sparsity of laser-induced breakdown spectroscopy data with randomized sparse principal component analysis",
  journal="Journal of Analytical Atomic Spectrometry",
  year="2021",
  volume="36",
  number="6",
  pages="1410--1421",
  doi="10.1039/d1ja00067e",
  issn="1364-5544",
  url="https://pubs.rsc.org/en/content/articlepdf/2021/JA/D1JA00067E"
}