Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BURGETOVÁ, I. MATOUŠEK, P. MUTUA, N.
Originální název
Statistical Methods for Anomaly Detection in Industrial Communication
Typ
zpráva odborná
Jazyk
angličtina
Originální abstrakt
This report focuses on application of selected statistical methods to anomaly detection of ICS protocols deployed in smart grids, namely IEC 104, GOOSE and MMS. Industrial network stations are typically pre-configured hardware devices that operate in master-slave mode and exhibits stable and periodic communication patterns over a long time. Due to the stability of ICS communication, statistical models present a natural way for detection of common ICS anomalies. For probabilistic modeling of network behavior we employ the following statistical features: distribution of packet inter-arrival times, packet size, and packet direction. This report presents the results of our experiments with three statistical methods: the Box Plot, Three Sigma Rule and Local Outlier Factor (LOF) which worked best for ICS datasets.
Klíčová slova
anomaly detection, communication patterns, industrial networks, IEC 104, monitoring
Autoři
BURGETOVÁ, I.; MATOUŠEK, P.; MUTUA, N.
Vydáno
30. 6. 2021
Nakladatel
Faculty of Information Technology BUT
Místo
IT-TR-2021-01, Brno
Strany počet
59
URL
https://www.fit.vut.cz/research/publication/12502/
BibTex
@techreport{BUT171490, author="Ivana {Burgetová} and Petr {Matoušek} and Nelson Makau {Mutua}", title="Statistical Methods for Anomaly Detection in Industrial Communication", year="2021", publisher="Faculty of Information Technology BUT", address="IT-TR-2021-01, Brno", pages="59", url="https://www.fit.vut.cz/research/publication/12502/" }