Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DEJDAR, P. MYŠKA, V. MÜNSTER, P. BURGET, R.
Originální název
Trains Detection Using State of Polarization Changes Measurement and Convolutional Neural Networks
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Fiber optic infrastructure security is of growing interest. The current distributed sensor systems are robust and expensive solutions, and their practical applications are uncommon. Research into simple and cost-effective solutions based on changes in the state of polarization is crucial. This paper expands the use of a vibration sensor based on the sensing of rapid changes in the state of polarization (SOP) of light in a standard single-mode optical fiber by using a convolutional neural network to detect trains running along the optical fiber infrastructure. It is a simple system that determines ongoing events near the optical fiber route by simply determining the signal boundaries that define the idle state. By using a neural network, it is possible to eliminate the distortion caused by the temperature changes and, for example, to improve detection in the the zones where the vibrations are not strong enough for a simple threshold resolution.
Klíčová slova
artificial intelligence; machine learning; optical fiber sensor; state of polarization changes; vibration
Autoři
DEJDAR, P.; MYŠKA, V.; MÜNSTER, P.; BURGET, R.
Vydáno
25. 5. 2021
Nakladatel
IEEE
ISBN
978-1-7281-5099-4
Kniha
2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) Proceedings
Strany od
1
Strany do
4
Strany počet
URL
https://ieeexplore.ieee.org/document/9430469
Plný text v Digitální knihovně
http://hdl.handle.net/11012/203013
BibTex
@inproceedings{BUT171700, author="Petr {Dejdar} and Vojtěch {Myška} and Petr {Münster} and Radim {Burget}", title="Trains Detection Using State of Polarization Changes Measurement and Convolutional Neural Networks", booktitle="2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) Proceedings", year="2021", pages="1--4", publisher="IEEE", doi="10.1109/INERTIAL51137.2021.9430469", isbn="978-1-7281-5099-4", url="https://ieeexplore.ieee.org/document/9430469" }