Detail publikace

Speaker activity driven neural speech extraction

DELCROIX, M. ŽMOLÍKOVÁ, K. OCHIAI, T. KINOSHITA, K. NAKATANI, T.

Originální název

Speaker activity driven neural speech extraction

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

Target speech extraction, which extracts the speech of a targetspeaker in a mixture given auxiliary speaker clues, has recentlyreceived increased interest. Various clues have been investigatedsuch as pre-recorded enrollment utterances, direction information,or video of the target speaker. In this paper, we explore the use ofspeaker activity information as an auxiliary clue for single-channelneural network-based speech extraction. We propose a speaker activitydriven speech extraction neural network (ADEnet) and showthat it can achieve performance levels competitive with enrollmentbasedapproaches, without the need for pre-recordings. We furtherdemonstrate the potential of the proposed approach for processingmeeting-like recordings, where speaker activity obtained from a diarizationsystem is used as a speaker clue for ADEnet. We show thatthis simple yet practical approach can successfully extract speakersafter diarization, which leads to improved ASR performancewhen using a single microphone, especially in high overlappingconditions, with relative word error rate reduction of up to 25 %.

Klíčová slova

Speech extraction, Speaker activity, Speech enhancement,Meeting recognition, Neural network

Autoři

DELCROIX, M.; ŽMOLÍKOVÁ, K.; OCHIAI, T.; KINOSHITA, K.; NAKATANI, T.

Vydáno

6. 6. 2021

Nakladatel

IEEE Signal Processing Society

Místo

Toronto

ISBN

978-1-7281-7605-5

Kniha

ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings

Strany od

6099

Strany do

6103

Strany počet

5

URL

BibTex

@inproceedings{BUT171749,
  author="DELCROIX, M. and ŽMOLÍKOVÁ, K. and OCHIAI, T. and KINOSHITA, K. and NAKATANI, T.",
  title="Speaker activity driven neural speech extraction",
  booktitle="ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings",
  year="2021",
  pages="6099--6103",
  publisher="IEEE Signal Processing Society",
  address="Toronto",
  doi="10.1109/ICASSP39728.2021.9414998",
  isbn="978-1-7281-7605-5",
  url="https://www.fit.vut.cz/research/publication/12479/"
}

Dokumenty