Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BRAVENEC, T.
Originální název
Multi-Class Weather Classification from Single Images with Convolutional Neural Networks on Embedded Hardware
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
The paper is focused on creating a lightweight machine learning solution for classification of weather conditions from input images, that can process the input data in real time on embedded devices. The approach to the classification uses deep convolutional neural networks architecture with focus on lightweight design and fast inference, while providing high accuracy results. The focus on creating lightweight convolutional neural network architecture capable of classification of weather conditions also enables usage of the network in real time applications at the edge.
Klíčová slova
deep learning, neural networks, computer vision, weather classification, machine learning, parallel computing, inference on edge, reduced precision computing
Autoři
Vydáno
27. 4. 2021
Nakladatel
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Místo
Brno
ISBN
978-80-214-5942-7
Kniha
Proceedings I of the 27th Conference STUDENT EEICT 2021
Číslo edice
1
Strany od
Strany do
5
Strany počet
BibTex
@inproceedings{BUT171849, author="Tomáš {Bravenec}", title="Multi-Class Weather Classification from Single Images with Convolutional Neural Networks on Embedded Hardware", booktitle="Proceedings I of the 27th Conference STUDENT EEICT 2021", year="2021", number="1", pages="1--5", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5942-7" }