Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVÁK, M. CRISTEA, I. BABATUNDE OLUWASEUN, O.
Originální název
Links Between HX-Groups and Hypergroups
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The concept of an HX-group is an upgrade of the concept of a group, in which a new operation is defined on the family of non-empty subsets of a group. If this new support set together with the new operation is a group, then we call it an HX-group. On the other hand, a hyperoperation is a mapping having the same codomain as the operation of an HX-group, i.e., the family of non-empty subsets of the initial set, but a different domain — the set itself. This could be (and was indeed) a source of confusion, which is clarified in this paper. Moreover, HX-groups naturally lead to constructions of hypergroups. The links between these two algebraic concepts are presented, with the aim of reviving the old notion of an HX-group in the current research on algebraic hyperstructures. One of such existing links and one newly established link are also discussed.
Klíčová slova
HX-group, hyperstructure theory, Chinese hypergroupoid, EL-hyperstructure, power set
Autoři
NOVÁK, M.; CRISTEA, I.; BABATUNDE OLUWASEUN, O.
Vydáno
28. 7. 2021
Nakladatel
World Scientific
ISSN
1005-3867
Periodikum
ALGEBRA COLLOQUIUM
Ročník
28
Číslo
3
Stát
Čínská lidová republika
Strany od
441
Strany do
452
Strany počet
12
URL
https://www.worldscientific.com/doi/epdf/10.1142/S1005386721000341
BibTex
@article{BUT172123, author="Michal {Novák} and Irina {Cristea} and Onasaya {Babatunde Oluwaseun}", title="Links Between HX-Groups and Hypergroups", journal="ALGEBRA COLLOQUIUM", year="2021", volume="28", number="3", pages="441--452", doi="10.1142/S1005386721000341", issn="1005-3867", url="https://www.worldscientific.com/doi/epdf/10.1142/S1005386721000341" }