Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SIKORA, P.
Originální název
Right convolutional neural network for classification illustrations in artworks
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
This paper deals with the image classification problem in the field of artworks. The article uses a custom dataset from artworks with eight classes of some not common objects and illustrations. This dataset is used to train three convolutional neural networks for classification. All classification results are well discussed and evaluated with an example on the images from a dataset.
Klíčová slova
artwork, convolutional neural network, deep learning, image classification, keras, machine learning
Autoři
Vydáno
27. 4. 2021
Nakladatel
Brno University of Technology, Faculty of Electrical Engineering and Comunnication
Místo
Brno
ISBN
978-80-214-5942-7
Kniha
Proceedings of the 27th Conference STUDENT EEICT 2021
Edice
1
Strany od
591
Strany do
595
Strany počet
5
URL
https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf
BibTex
@inproceedings{BUT172262, author="Pavel {Sikora}", title="Right convolutional neural network for classification illustrations in artworks", booktitle="Proceedings of the 27th Conference STUDENT EEICT 2021", year="2021", series="1", pages="591--595", publisher="Brno University of Technology, Faculty of Electrical Engineering and Comunnication", address="Brno", isbn="978-80-214-5942-7", url="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf" }