Detail publikace

POWER ASYMPTOTICS OF SOLUTIONS TO THE DISCRETE EMDEN-FOWLER TYPE EQUATION

DIBLÍK, J. KOROBKO, E.

Originální název

POWER ASYMPTOTICS OF SOLUTIONS TO THE DISCRETE EMDEN-FOWLER TYPE EQUATION

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

In the paper, the discrete Emden-Fowler equation $$\Delta62 u(k) \pm k^\alpha u^m (k) = 0$$ is considered, where $k \ge k_0$, $k$ is an independent variable, $k_0$ is a fixed integer,$u: \{k_0,k_0 + 1,...\} \to \mathbb{R}$, $\Delta u(k)$ is the first difference of $u(k)$, $Delta^2u(k)$ is the second difference of $u(k)$, $m$ and $\alpha$ are real numbers. A result on asymptotic behaviour of solutions when $k \to \infty$ is proved and admissible values $m$ and $\alpha$ satisfying assumptions of this result are considered in an $(m,\alpha)$-plane.

Klíčová slova

Emden-Fowler equation, discrete equation, nonlinear equation, asymptotic behaviour

Autoři

DIBLÍK, J.; KOROBKO, E.

Vydáno

27. 8. 2021

Nakladatel

Universita obrany

Místo

Brno

ISBN

978-80-7582-380-9

Kniha

MITAV 2021

Strany od

1

Strany do

11

Strany počet

11

URL

BibTex

@inproceedings{BUT173025,
  author="Josef {Diblík} and Evgeniya {Korobko}",
  title="POWER ASYMPTOTICS OF SOLUTIONS TO THE DISCRETE EMDEN-FOWLER TYPE EQUATION",
  booktitle="MITAV 2021",
  year="2021",
  pages="1--11",
  publisher="Universita obrany",
  address="Brno",
  isbn="978-80-7582-380-9",
  url="https://mitav.unob.cz"
}