Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
YOUNESIAN, E. SIKLOSI, M. KHATIB, N. HOSEK, J.
Originální název
Syslog Anomaly Detection Using Supervised Machine Learning Models
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Nowadays, detecting anomalies is crucial for managing every network. Massive logs are produced by modern large-scale distributed systems. These logs contain useful information regarding network behavior. Traditionally, developers detect anomalies by complex coded scripts. However, such approach is not efficient for large-scale systems where they generate thousands of logs. Thus, syslog anomalz detection tool has been proposed in this paper by using supervised machine learning models. As a source of dataset for the machine learning models, syslog generator was developed to generate the desired dataset. A comprative study about many supervised methods has been evaluated in this paper using different amount of datasets. The target was to check the impact of enlargement of datasets on the performance of the anomaly detections.
Klíčová slova
Supervised Machine Learning, Anomaly Detection
Autoři
YOUNESIAN, E.; SIKLOSI, M.; KHATIB, N.; HOSEK, J.;
Vydáno
5. 10. 2021
Nakladatel
IEEE
ISBN
978-1-6654-0219-4
Kniha
2021 13th Congress on Ultra Modern Telecommunications and Control Systems and Workshops
Strany od
78
Strany do
84
Strany počet
7
BibTex
@inproceedings{BUT173144, author="YOUNESIAN, E. and SIKLOSI, M. and KHATIB, N. and HOSEK, J.", title="Syslog Anomaly Detection Using Supervised Machine Learning Models", booktitle="2021 13th Congress on Ultra Modern Telecommunications and Control Systems and Workshops", year="2021", pages="78--84", publisher="IEEE", doi="10.1109/ICUMT54235.2021.9631564", isbn="978-1-6654-0219-4" }