Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SIGMUND, M. HRABINA, M.
Originální název
Efficient Feature Set Developed for Acoustic Gunshot Detection in Open Space
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
This paper presents an efficient approach to automatic gunshot detection based on a combination of two feature sets: adapted standard sound features and hand-crafted novel features. The standard features are mel-frequency cepstral coefficients adapted for gunshot recognition in terms of uniform gamma-tone filters linearly spaced over the whole frequency range from 0 kHz to 16 kHz. The novel features were derived in the time domain from individual significant points of the raw waveform after amplitude normalization. Experiments were performed using single and ensemble neural networks to verify the effectiveness of the novel features for supplementing the standard features. In binary classification, the developed approach achieved an accuracy of 95.02 % in gunshot detection.
Klíčová slova
Acoustic signal processing; gunshot detection; neural networks; parameter estimation
Autoři
SIGMUND, M.; HRABINA, M.
Vydáno
23. 8. 2021
Nakladatel
Kaunas University of Technology
Místo
Kaunas
ISSN
1392-1215
Periodikum
Elektronika Ir Elektrotechnika
Ročník
27
Číslo
4
Stát
Litevská republika
Strany od
62
Strany do
68
Strany počet
7
URL
https://eejournal.ktu.lt/index.php/elt/article/view/28877
Plný text v Digitální knihovně
http://hdl.handle.net/11012/203054
BibTex
@article{BUT173150, author="Milan {Sigmund} and Martin {Hrabina}", title="Efficient Feature Set Developed for Acoustic Gunshot Detection in Open Space", journal="Elektronika Ir Elektrotechnika", year="2021", volume="27", number="4", pages="62--68", doi="10.5755/j02.eie.28877", issn="1392-1215", url="https://eejournal.ktu.lt/index.php/elt/article/view/28877" }