Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VYCHODIL, H. SCHMIDT, M. NEPEVNÝ, P. PIVOŇKA, P.
Originální název
Generalized Predictive Control with a Non-linear Autoregressive Model
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper presents a solution to computation of predictive control using non-linear auto-regressive models. For the non-linear model a neural network is used as a perspective tool for modelling of dynamic systems. However, the described approach is applicable to any type of auto-regressive model. The model is not linearized in the operating point, but in each control optimization step the models derivative is computed (linearization) for all points in the prediction horizon. The method can be used in real-time control. This is verified by porting the algorithm directly to the PLC.
Klíčová slova
Neural network, Modelling, Non-linear model, Predictive control
Autoři
VYCHODIL, H.; SCHMIDT, M.; NEPEVNÝ, P.; PIVOŇKA, P.
Rok RIV
2005
Vydáno
14. 3. 2005
Nakladatel
WSEAS
Místo
Praha
ISBN
960-8457-12-2
Kniha
Automatic Control Modeling and Simulation
Strany od
85
Strany do
89
Strany počet
5
BibTex
@inproceedings{BUT17482, author="Hynek {Vychodil} and Michal {Schmidt} and Petr {Nepevný} and Petr {Pivoňka}", title="Generalized Predictive Control with a Non-linear Autoregressive Model", booktitle="Automatic Control Modeling and Simulation", year="2005", pages="85--89", publisher="WSEAS", address="Praha", isbn="960-8457-12-2" }