Detail publikace

Walking diagonally: a simple proof of countability of the set of all finite subsets of naturals

KUREŠ, M.

Originální název

Walking diagonally: a simple proof of countability of the set of all finite subsets of naturals

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

The countability of the set of finite subsets of natural numbers is derived. In addition to the derivation itself, the use of diagonal method is illustratively presented; thinking about infinite sets relates to the name of Georg Ferdinand Ludwig Philipp Cantor, the creator of set theory, which has become a fundamental theory in mathematics. The proof of the claim is original, although the theorem is an analogy with the famous theorem about the countability of rational numbers. A certain insight into the subsets of natural numbers is given. Anyway, the technique could be considered already at high school level as it is essential for mathematical thinking.

Klíčová slova

Cantor’s diagonal method, finite subsets of natural numbers

Autoři

KUREŠ, M.

Vydáno

30. 12. 2021

Nakladatel

Beirut Arab University Press

Místo

Beirut

ISSN

2706-784X

Periodikum

BAU Journal - Science and Technology

Ročník

3

Číslo

1

Stát

Libanonská republika

Strany od

1

Strany do

5

Strany počet

3

URL

BibTex

@article{BUT175581,
  author="Miroslav {Kureš}",
  title="Walking diagonally: a simple proof of countability of the set of all finite subsets of naturals",
  journal="BAU Journal - Science and Technology",
  year="2021",
  volume="3",
  number="1",
  pages="1--5",
  issn="2706-784X",
  url="https://digitalcommons.bau.edu.lb/stjournal/vol3/iss1/7/"
}