Detail publikace

Analysis of X-Vectors for Low-Resource Speech Recognition

KARAFIÁT, M. VESELÝ, K. ČERNOCKÝ, J. PROFANT, J. NYTRA, J. HLAVÁČEK, M. PAVLÍČEK, T.

Originální název

Analysis of X-Vectors for Low-Resource Speech Recognition

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

The paper presents a study of usability of x-vectors for adaptationof automatic speech recognition (ASR) systems. Xvectorsare Neural Network (NN)-based speaker embeddingsrecently proposed in speaker recognition (SR). They quicklyreplaced common i-vectors and became new state-of-the-arttechnique. Here, the same approach is adopted for ASR withthe hope of similar outcome. All experiments were done onASR for the latest IARPA MATERIAL evaluation running onPashto language. Over 1% absolute improvement was observedwith x-vectors over traditional i-vectors, even whenthe x-vector extractor was not trained on target Pashto data.

Klíčová slova

speech recognition, adaptation, x-vectors,data augmentation, robustness

Autoři

KARAFIÁT, M.; VESELÝ, K.; ČERNOCKÝ, J.; PROFANT, J.; NYTRA, J.; HLAVÁČEK, M.; PAVLÍČEK, T.

Vydáno

6. 6. 2021

Nakladatel

IEEE Signal Processing Society

Místo

Toronto, Ontario

ISBN

978-1-7281-7605-5

Kniha

ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Strany od

6998

Strany do

7002

Strany počet

5

URL

BibTex

@inproceedings{BUT175794,
  author="KARAFIÁT, M. and VESELÝ, K. and ČERNOCKÝ, J. and PROFANT, J. and NYTRA, J. and HLAVÁČEK, M. and PAVLÍČEK, T.",
  title="Analysis of X-Vectors for Low-Resource Speech Recognition",
  booktitle="ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
  year="2021",
  pages="6998--7002",
  publisher="IEEE Signal Processing Society",
  address="Toronto, Ontario",
  doi="10.1109/ICASSP39728.2021.9414725",
  isbn="978-1-7281-7605-5",
  url="https://www.fit.vut.cz/research/publication/12525/"
}

Dokumenty