Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BENEŠ, K. BURGET, L.
Originální název
Text Augmentation for Language Models in High Error Recognition Scenario
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper, we explore several data augmentation strategies for training of language models for speech recognition. We compare augmentation based on global error statistics with one based on unigram statistics of ASR errors and with labelsmoothing and its sampled variant. Additionally, we investigate the stability and the predictive power of perplexity estimated on augmented data. Despite being trivial, augmentation driven by global substitution, deletion and insertion rates achieves the best rescoring results. On the other hand, even though the associated perplexity measure is stable, it gives no better prediction of the final error rate than the vanilla one. Our best augmentation scheme increases the WER improvement from second-pass rescoring from 1.1% to 1.9% absolute on the CHiMe-6 challenge.
Klíčová slova
data augmentation, error simulation, language modeling, automatic speech recognition
Autoři
BENEŠ, K.; BURGET, L.
Vydáno
30. 8. 2021
Nakladatel
International Speech Communication Association
Místo
Brno
ISSN
1990-9772
Periodikum
Proceedings of Interspeech
Ročník
2021
Číslo
8
Stát
Francouzská republika
Strany od
1872
Strany do
1876
Strany počet
5
URL
https://www.isca-speech.org/archive/interspeech_2021/benes21_interspeech.html
BibTex
@inproceedings{BUT175841, author="Karel {Beneš} and Lukáš {Burget}", title="Text Augmentation for Language Models in High Error Recognition Scenario", booktitle="Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH", year="2021", journal="Proceedings of Interspeech", volume="2021", number="8", pages="1872--1876", publisher="International Speech Communication Association", address="Brno", doi="10.21437/Interspeech.2021-627", issn="1990-9772", url="https://www.isca-speech.org/archive/interspeech_2021/benes21_interspeech.html" }
Dokumenty
benes21_interspeech.pdf