Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVÁK, L. VOŘECHOVSKÝ, M. SADÍLEK, V.
Originální název
Adaptive Sequential Sampling for Polynomial Chaos Expansion
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper presents a sampling strategy created specifically for surrogate modeling via polynomial chaos expansion. The proposed method combines adaptivity of surrogate model and sequential sampling enabling one-by-one extension of an experimental design. The iteration process of sequential sampling selects from a large pool of candidate points by trying to cover the design domain proportionally to their local variance contribution. The criterion for the sample selection balances between exploitation of the surrogate model and exploration of the design domain. The obtained numerical results confirm its superiority over standard non-sequential approaches in terms of surrogate model accuracy and estimation of the output variance.
Klíčová slova
Polynomial Chaos Expansion; Adaptive Sampling; Sequential Sampling
Autoři
NOVÁK, L.; VOŘECHOVSKÝ, M.; SADÍLEK, V.
Vydáno
28. 6. 2021
Nakladatel
National Technical University of Athens
Místo
Athens, Greece
ISBN
978-618-85072-6-5
Kniha
Proceedings of the 4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering
Strany od
296
Strany do
301
Strany počet
6
BibTex
@inproceedings{BUT176065, author="Lukáš {Novák} and Miroslav {Vořechovský} and Václav {Sadílek}", title="Adaptive Sequential Sampling for Polynomial Chaos Expansion ", booktitle="Proceedings of the 4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering", year="2021", pages="296--301", publisher="National Technical University of Athens", address="Athens, Greece", doi="10.7712/120221.8038.18955", isbn="978-618-85072-6-5" }