Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KOCOUR, M. VESELÝ, K. SZŐKE, I. KESIRAJU, S. ZULUAGA-GOMEZ, J. BLATT, A. PRASAD, A. NIGMATULINA, I. MOTLÍČEK, P. KLAKOW, D. TART, A. KOLČÁREK, P. ČERNOCKÝ, J. CEVENINI, C. CHOUKRI, K. RIGAULT, M. LANDIS, F. SARFJOO, S.
Originální název
Automatic Processing Pipeline for Collecting and Annotating Air-Traffic Voice Communication Data
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This document describes our pipeline for automatic processing of ATCO pilot audio communication we developed as part of the ATCO2 project. So far, we collected two thousand hours of audio recordings that we either preprocessed for the transcribers or used for semi-supervised training. Both methods of using the collected data can further improve our pipeline by retraining our models. The proposed automatic processing pipeline is a cascade of many standalone components: (a) segmentation, (b) volume control, (c) signal-to-noise ratio filtering, (d) diarization, (e) speech-totext (ASR) module, (f) English language detection, (g) call-sign code recognition, (h) ATCOpilot classification and (i) highlighting commands and values. The key component of the pipeline is a speech-to-text transcription system that has to be trained with real-world ATC data; otherwise, the performance is poor. In order to further improve speech-to-text performance, we apply both semisupervised training with our recordings and the contextual adaptation that uses a list of plausible callsigns from surveillance data as auxiliary information. Downstream NLP/NLU tasks are important from an application point of view. These application tasks need accurate models operating on top of the real speech-to-text output; thus, there is a need for more data too. Creating ATC data is the main aspiration of the ATCO2 project. At the end of the project, the data will be packaged and distributed by ELDA.
Klíčová slova
automatic speech recognition; air traffic control; contextual adaptation; language identification; named entity recognition; opensky network
Autoři
KOCOUR, M.; VESELÝ, K.; SZŐKE, I.; KESIRAJU, S.; ZULUAGA-GOMEZ, J.; BLATT, A.; PRASAD, A.; NIGMATULINA, I.; MOTLÍČEK, P.; KLAKOW, D.; TART, A.; KOLČÁREK, P.; ČERNOCKÝ, J.; CEVENINI, C.; CHOUKRI, K.; RIGAULT, M.; LANDIS, F.; SARFJOO, S.
Vydáno
18. 11. 2021
Nakladatel
MDPI
Místo
Brussels
ISSN
2504-3900
Periodikum
Proceedings
Ročník
2021
Číslo
12
Stát
Švýcarská konfederace
Strany od
1
Strany do
10
Strany počet
URL
https://www.mdpi.com/2673-4591/13/1/8/htm
BibTex
@inproceedings{BUT176487, author="KOCOUR, M. and VESELÝ, K. and SZŐKE, I. and KESIRAJU, S. and ZULUAGA-GOMEZ, J. and BLATT, A. and PRASAD, A. and NIGMATULINA, I. and MOTLÍČEK, P. and KLAKOW, D. and TART, A. and KOLČÁREK, P. and ČERNOCKÝ, J. and CEVENINI, C. and CHOUKRI, K. and RIGAULT, M. and LANDIS, F. and SARFJOO, S.", title="Automatic Processing Pipeline for Collecting and Annotating Air-Traffic Voice Communication Data", booktitle="Proceedings of 9th OpenSky Symposium 2021, OpenSky Network, Brussels, Belgium", year="2021", journal="Proceedings", volume="2021", number="12", pages="1--10", publisher="MDPI", address="Brussels", doi="10.3390/engproc2021013008", issn="2504-3900", url="https://www.mdpi.com/2673-4591/13/1/8/htm" }