Detail publikace

Applications of the differential transform to second-order half-linear Euler equations

PÁTÍKOVÁ, Z. REBENDA, J.

Originální název

Applications of the differential transform to second-order half-linear Euler equations

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

Nonlinear differential equations are considered to be an important tool for describing a number of phenomena in engineering and the natural sciences, and their study is thus subject to contemporary research. The purpose of the paper is to show applications of the differenttial transform to second-order half-linear Euler equations with and without delay. The case of proportional delay is considered. Finding a numerical solution to an initial value problem is reduced to solving recurrence relations. The outputs of the recurrence relations are coefficients of the Taylor series of the solution. Validity of the presented algorithm is demonstrated on concrete examples of initial value problems. Numerical results are compared with solutions produced by Matlab function "ddesd".

Klíčová slova

Half-linear Euler equation; Differential transform; Method of steps; Differential equation with delay

Autoři

PÁTÍKOVÁ, Z.; REBENDA, J.

Vydáno

31. 1. 2022

Nakladatel

Elsevier B.V.

Místo

Amsterdam

ISSN

1877-7503

Periodikum

Journal of Computational Science

Ročník

59 (2022)

Číslo

1

Stát

Nizozemsko

Strany od

1

Strany do

6

Strany počet

6

URL

BibTex

@article{BUT176491,
  author="Zuzana {Pátíková} and Josef {Rebenda}",
  title="Applications of the differential transform to second-order half-linear Euler equations",
  journal="Journal of Computational Science",
  year="2022",
  volume="59 (2022)",
  number="1",
  pages="1--6",
  doi="10.1016/j.jocs.2022.101564",
  issn="1877-7503",
  url="https://www.sciencedirect.com/science/article/pii/S1877750322000060?dgcid=coauthor"
}