Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠREMR, J.
Originální název
On a structure of the set of positive solutions to second-order equations with a super-linear non-linearity
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We study the existence and multiplicity of positive solutions to the periodic problem u '' = p(t)u - q(t, u)u + f(t); u(0) = u(omega), u'(0) = u'(omega), where p, f is an element of L([0, omega]) and q: [0, omega] x R -> R is a Caratheodory function. By using the method of lower and upper functions, we show some properties of the solution set of the considered problem and, in particular, the existence of a minimal positive solution.
Klíčová slova
Periodic solution;second-order differential equation;super-linear non-linearity;existence;positive solution;minimal positive solution
Autoři
Vydáno
1. 2. 2022
ISSN
1072-947X
Periodikum
Georgian Mathematical Journal
Ročník
29
Číslo
1
Stát
Spolková republika Německo
Strany od
139
Strany do
152
Strany počet
14
URL
https://www.degruyter.com/document/doi/10.1515/gmj-2021-2117/html
BibTex
@article{BUT176606, author="Jiří {Šremr}", title="On a structure of the set of positive solutions to second-order equations with a super-linear non-linearity", journal="Georgian Mathematical Journal", year="2022", volume="29", number="1", pages="139--152", doi="10.1515/gmj-2021-2117", issn="1072-947X", url="https://www.degruyter.com/document/doi/10.1515/gmj-2021-2117/html" }