Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DIBLÍK, J. GALEWSKI, M.
Originální název
Existence of solutions in cones to delayed higher-order differential equations
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
An n-th order delayed differential equation y^{(n)}(t) = f(t, y_t, y′_t, . . . , y^{(n−1)}_t) is considered, where y_t(θ) = y(t + θ), θ ∈ [−τ, 0], τ > 0, if t → ∞. A criterion is formulated guaranteeing the existence of a solution y = y(t) in a cone 0 < (−1)^{i−1}y^{(i−1)}(t) < (−1)^{i−1}φ^{(i−1)}(t), i = 1, . . . , n where φ is an n-times continuously diff erentiable function such that 0 < (−1)^iφ^{(i)}(t), i = 0, . . . , n. The proof is based on a similar result proved first for a system of delayed differential equations equivalent in a sense. Particular linear cases are considered and an open problem is formulated as well.
Klíčová slova
Solution in a cone; Higher-order equation; Delayed diff erential equation; Long-time behaviour
Autoři
DIBLÍK, J.; GALEWSKI, M.
Vydáno
1. 8. 2022
Nakladatel
Elsevier
Místo
Amsterdam
ISSN
0893-9659
Periodikum
APPLIED MATHEMATICS LETTERS
Ročník
130
Číslo
108014
Stát
Spojené státy americké
Strany od
1
Strany do
7
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S0893965921001221
BibTex
@article{BUT177095, author="Josef {Diblík} and Marek {Galewski}", title="Existence of solutions in cones to delayed higher-order differential equations", journal="APPLIED MATHEMATICS LETTERS", year="2022", volume="130", number="108014", pages="1--7", doi="10.1016/j.aml.2022.108014", issn="0893-9659", url="https://www.sciencedirect.com/science/article/pii/S0893965921001221" }