Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HALFAROVÁ, H. DIBLÍK, J. ŠAFAŘÍK, J.
Originální název
General solution to a weakly delayed planar linear discrete system, the case of real different eigenvalues of the matrix of nondelayed terms
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper considers a linear discrete system with a single delay $$ x(k+1)=Ax(k)+B(k)x(k-m) $$ where $k\in\mathbb{Z}_0^{\infty}:=\{0,1,\dots,\infty\}$, $x\colon {\mathbb{Z}}_0^{\infty}\to\mathbb{R}^2$, $m$ is a positive fixed integer, $A=\{a_{ij}\}_{i,j=1}^2$ and the entries of matrix $B=\{b_{ij}(k)\}_{i,j=1}^2$ are defined for every $k\in\mathbb{Z}_0^{\infty}$. It is assumed that the system is weakly delayed and the eigenvalues of the matrix $A$ are real and different. Analyzing and simplifying a formula for the general solution derived recently, it is shown that, for $k\ge m$, the number of arbitrary constants in this solution can be reduced to two. %rather than to $2(m + 1)$. Conditional stability of a given system is considered. In addition, a~non-delayed planar linear discrete system is constructed such that, for $k\ge m$ and after a transformation, we get the same solutions as those of the delayed system.
Klíčová slova
planar linear discrete system; constant coefficients; weakly delayed system
Autoři
HALFAROVÁ, H.; DIBLÍK, J.; ŠAFAŘÍK, J.
Vydáno
6. 4. 2022
Nakladatel
American Institute of Physics
Místo
Melville (USA)
ISBN
978-0-7354-4182-8
Kniha
INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020
ISSN
0094-243X
Periodikum
AIP conference proceedings
Ročník
2245
Číslo
1
Stát
Spojené státy americké
Strany od
270009-1
Strany do
270009-4
Strany počet
4
URL
https://doi.org/10.1063/5.0081842