Detail publikace

General solution to a weakly delayed planar linear discrete system, the case of real different eigenvalues of the matrix of nondelayed terms

HALFAROVÁ, H. DIBLÍK, J. ŠAFAŘÍK, J.

Originální název

General solution to a weakly delayed planar linear discrete system, the case of real different eigenvalues of the matrix of nondelayed terms

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

The paper considers a linear discrete system with a single delay $$ x(k+1)=Ax(k)+B(k)x(k-m) $$ where $k\in\mathbb{Z}_0^{\infty}:=\{0,1,\dots,\infty\}$, $x\colon {\mathbb{Z}}_0^{\infty}\to\mathbb{R}^2$, $m$ is a positive fixed integer, $A=\{a_{ij}\}_{i,j=1}^2$ and the entries of matrix $B=\{b_{ij}(k)\}_{i,j=1}^2$ are defined for every $k\in\mathbb{Z}_0^{\infty}$. It is assumed that the system is weakly delayed and the eigenvalues of the matrix $A$ are real and different. Analyzing and simplifying a formula for the general solution derived recently, it is shown that, for $k\ge m$, the number of arbitrary constants in this solution can be reduced to two. %rather than to $2(m + 1)$. Conditional stability of a given system is considered. In addition, a~non-delayed planar linear discrete system is constructed such that, for $k\ge m$ and after a transformation, we get the same solutions as those of the delayed system.

Klíčová slova

planar linear discrete system; constant coefficients; weakly delayed system

Autoři

HALFAROVÁ, H.; DIBLÍK, J.; ŠAFAŘÍK, J.

Vydáno

6. 4. 2022

Nakladatel

American Institute of Physics

Místo

Melville (USA)

ISBN

978-0-7354-4182-8

Kniha

INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020

ISSN

0094-243X

Periodikum

AIP conference proceedings

Ročník

2245

Číslo

1

Stát

Spojené státy americké

Strany od

270009-1

Strany do

270009-4

Strany počet

4

URL