Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BILÍK, Š. HORÁK, K.
Originální název
SIFT and SURF based feature extraction for the anomaly detection
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper, we suggest a way to use SIFT and SURF algorithms to extract the image features for anomaly detection. We use those feature vectors to train various classifiers on a real-world dataset in the semi-supervised (with a small number of faulty samples) manner with a large number of classifiers and in the one-class (with no faulty samples) manner using the SVDD and SVM classifier. We prove, that the SIFT and SURF algorithms could be used as feature extractors, that they could be used to train a semi-supervised and one-class classifier with an accuracy around 89\% and that the performance of the one-class classifier could be comparable to the semi-supervised one. We also made our dataset and source code publicly available.
Klíčová slova
Anomaly detection;Object descriptors;Machine Learning;SIFT;SURF
Autoři
BILÍK, Š.; HORÁK, K.
Vydáno
26. 4. 2022
Nakladatel
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo
Brno
ISBN
978-80-214-6029-4
Kniha
Proceedings I of the 28 th Conference STUDENT EEICT 2022 General Papers
Edice
1
Strany od
459
Strany do
464
Strany počet
6
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1.pdf
BibTex
@inproceedings{BUT177722, author="Šimon {Bilík} and Karel {Horák}", title="SIFT and SURF based feature extraction for the anomaly detection", booktitle="Proceedings I of the 28 th Conference STUDENT EEICT 2022 General Papers", year="2022", series="1", pages="459--464", publisher="Brno University of Technology, Faculty of Electrical Engineering and Communication", address="Brno", isbn="978-80-214-6029-4", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1.pdf" }