Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BIOLEK, Z. BIOLKOVÁ, V. BIOLEK, D. KOLKA, Z.
Originální název
Modeling of the generic memcapacitors using higher-order multi-ports
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The paper introduces predictive modeling of generic memcapacitors using multi-port versions of fundamental elements of Chua’s table. Generic memcapacitors are the most common type of memcapacitive systems; they behave as state-dependent capacitors, with the capacitance being independent of the voltage and charge. The predictive model consists of a multiport capacitor and an associated dynamic system that represents the state of the dynamics. It is shown that the potential function of the multi-port is the energy of the electrostatic field of the memcapacitor. It enables incorporating this element into the framework of Lagrangian formalism. Practical implementations of the model are presented on specific examples from selected fields of science: a memory circuit with an electrostatically controlled bistable membrane, and a lipid bilayer model inspired by the processes that occur in cell membranes.
Klíčová slova
Chua’s table; Multiport element; Memcapacitive system; Lagrangian
Autoři
BIOLEK, Z.; BIOLKOVÁ, V.; BIOLEK, D.; KOLKA, Z.
Vydáno
14. 5. 2022
Nakladatel
Elsevier
Místo
Amsterodam, Holandsko
ISSN
1007-5704
Periodikum
Communications in Nonlinear Science and Numerical Simulation
Ročník
113
Číslo
1
Stát
Nizozemsko
Strany od
Strany do
14
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S1007570422001423
Plný text v Digitální knihovně
http://hdl.handle.net/11012/204312
BibTex
@article{BUT177953, author="Zdeněk {Biolek} and Viera {Biolková} and Dalibor {Biolek} and Zdeněk {Kolka}", title="Modeling of the generic memcapacitors using higher-order multi-ports", journal="Communications in Nonlinear Science and Numerical Simulation", year="2022", volume="113", number="1", pages="1--14", doi="10.1016/j.cnsns.2022.106497", issn="1007-5704", url="https://www.sciencedirect.com/science/article/pii/S1007570422001423" }